18/05/2020 Chemistry Mathematics
DOI: 10.1080/02664763.2019.1673324 SemanticScholar ID: 209994510 MAG: 2977915699

Geometry-based distance for clustering amino acids

Publication Summary

ABSTRACT Clustering amino acids is one of the most challenging problems in functional and structural prediction of protein. Previous studies have proposed clusters based on measurements of physical and biochemical characteristics of the amino acids such as volume, area, hydrophilicity, polarity, hydrogen bonding, shape, and charge. These characteristics, although important, are less directly related to the protein structure compared to geometrical characteristics such as dihedral angles between amino acids. We propose using the p-value from a test of equality of dihedral-angle distributions as the basis of a distance measure for the clustering. In this novel approach, an energy test is modified to deal with bivariate angular data and the p-value is obtained via a permutation method. The results indicate that the clusters of amino acids have sensible interpretation where Glycine, Proline, and Asparagine each forms a distinct cluster. A simulation study suggests that this approach has good working characteristics to cluster amino acids.

CAER Authors

Avatar Image for Arief Gusnanto

Dr. Arief Gusnanto

University of Leeds

Share this

Next publication

2009 Psychology

The Dynamics of Category Conjunctions

R. Hutter, R. Crisp, G. Humphreys, Gillian. M. Waters + 1 more