Publication Summary
Abstract As the world economies get out of the lockdown imposed by the COVID-19 pandemic, there is an urgent need to assess the suitability of known technologies to mitigate COVID-19 transmission in confined spaces such as buildings. This feasibility study looks at the method of upper-room ultraviolet (UV) air disinfection that has already proven its efficacy in preventing the transmission of airborne diseases such as measles and tuberculosis. Using published data from various sources it is shown that the SARS-CoV-2 virus, which causes COVID-19, is highly likely to be susceptible to UV damage while suspended in air irradiated by UV-C at levels that are acceptable and safe for upper-room applications. This is while humans are present in the room. Both the expected and worst-case scenarios are investigated to show the efficacy of the upper-room UV-C approach to reduce COVID-19 air transmission in a confined space with moderate but sufficient height. Discussion is given on the methods of analysis and the differences between virus susceptibility to UV-C when aerosolised or in liquid or on a surface.
CAER Authors

Dr. Eldad Avital
Queen Mary University of London - Reader in Computational (& Experimental) Fluids and Acoustics